Traversing the Ethical Terrain of AI: A Conceptual Framework for Practicing Research and Publication in the AI Era
DOI:
https://doi.org/10.54392/ajir2443Keywords:
Artificial intelligence, Framework, AI Ethics, Publication, Decision Making, TransparencyAbstract
The ethical concerns of AI research and dissemination must be carefully considered in accordance with the large impact of AI on communities and enterprises. This research explores the complicated ethical framework that has been impacted by recent advancements in AI. It examines concerns raised in research and publication through an extensive literature on AI ethics. Researchers, academics, and politicians can address the challenges of AI research and dissemination with the help of this research guide. It highlights the need of guidelines for ensuring responsible and ethical behaviour AI research. This guide is an important resource for AI stakeholders. It promotes an ethical and responsible culture in the rapidly evolving field of AI research and publication.
References
Bellamy, R., Mojsilovic, A., Nagar, S., Ramamurthy, K., Richards, J., Saha, D., Sattigeri, P., Singh, M., Varshney, K., Zhang, Y., Dey, K., Hind, M., Hoffman, S., Houde, S., Kannan, K., Lohia, P., Martino, J., Mehta, S. (2019) AI Fairness 360: An extensible toolkit for detecting and mitigating algorithmic bias. IBM Journal of Research and Development, 63(4/5), 4-1. https://doi.org/10.1147/JRD.2019.2942287
Brusa, E., Cibrario, L., Delprete, C., Di Maggio, L.G. (2023). Explainable AI for machine fault diagnosis: understanding features’ contribution in machine learning models for industrial condition monitoring. Applied Sciences, 13(4), 2038. https://doi.org/10.3390/app13042038
Byrd, J.B., Greene, A.C., Prasad, D.V., Jiang, X., Greene, C.S. (2020). Responsible, practical genomic data sharing that accelerates research. Nature Reviews Genetics, 21(10), 615-629. https://doi.org/10.1038/s41576-020-0257-5
Elali, F. R., & Rachid, L. N. (2023). AI-generated research paper fabrication and plagiarism in the scientific community. Patterns, 4(3), 100706. https://doi.org/10.1016/j.patter.2023.100706
Gupta, P., Ding, B., Guan, C., & Ding, D. (2024). Generative AI: A systematic review using topic modelling techniques. Data and Information Management, 8(2), 100066. https://doi.org/10.1016/j.dim.2024.100066
Huang, C., Zhang, Z., Mao, B., Yao, X (2022). An overview of artificial intelligence ethics. IEEE Transactions on Artificial Intelligence, 4(4), 799-819. https://doi.org/10.1109/TAI.2022.3194503
LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. nature, 521(7553), 436-444. https://doi.org/10.1038/nature14539
Mittelstadt, B.D., Allo, P., Taddeo, M., Wachter, S., Floridi, L. (2016). The ethics of algorithms: Mapping the debate. Big Data & Society, 3(2), 2053951716679679. https://doi.org/10.1177/2053951716679679
Mytnyk, B., Tkachyk, O., Shakhovska, N., Fedushko, S., Syerov, Y. (2023). Application of artificial intelligence for fraudulent banking operations recognition. Big Data and Cognitive Computing, 7(2), 93. https://doi.org/10.3390/bdcc7020093
Redmon, J., Divvala, S., Girshick, R., Farhadi, A., (2016). You only look once: Unified, real-time object detection. In Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), IEEE, USA. https://doi.org/10.1109/CVPR.2016.91
Salt, M. (2019). Research Ethics Board/Institutional Review Board Variability and Other Ethical Challenges in Multi-Site Research Involving Participants on the Autism Spectrum. Research Involving Participants with Cognitive Disability and Differences: Ethics, Autonomy, Inclusion, and Innovation, 77. https://doi.org/10.1093/oso/9780198824343.003.0007
Stahl, B.C. (2021). Ethical Issues of AI. Artificial intelligence for a better future: an ecosystem perspective on the ethics of AI and emerging digital technologies, Springer Nature. https://doi.org/10.1007/978-3-030-69978-9_4
Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A. (2015). Going deeper with convolutions. In Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), IEEE, USA. https://doi.org/10.1109/CVPR.2015.7298594
Toth, A, Banks, G., Mellor, D., O’Boyle, E., Dickson, A., Davis, D., DeHaven, A., Bochantin, J., Borns, J. (2020) Study Preregistration: An Evaluation of a Method for Transparent Reporting. Journal of Business and Psychology, 36(4), 553–571. https://doi.org/10.1007/s10869-020-09695-3
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I., (2017). Attention is all you need. Advances in Neural Information Processing Systems 30 (NIPS 2017).
Vinuesa, R., Azizpour, H., Leite, I., Balaam, M., Dignum, V., Domisch, S., Felländer, A., Daniela Langhans, S., Tegmark, M., Fuso Nerini, F. (2020). The role of artificial intelligence in achieving the Sustainable Development Goals. Nature communications, 11(1), 1-10. https://doi.org/10.1038/s41467-019-14108-y
Vora, L.K., Gholap, A.D., Jetha, K., Thakur, R.R.S., Solanki, H.K., Chavda, V.P. (2023). Artificial intelligence in pharmaceutical technology and drug delivery design. Pharmaceutics, 15(7), 1916. https://doi.org/10.3390/pharmaceutics15071916
Zhang, B., Shi, H., Wang, H. (2023). Machine learning and AI in cancer prognosis, prediction, and treatment selection: a critical approach. Journal of multidisciplinary healthcare, 1779-1791. https://doi.org/10.2147/JMDH.S410301
Zhang, L., Pentina, I., Fan, Y. (2021). Who do you choose? Comparing perceptions of human vs robo-advisor in the context of financial services. Journal of Services Marketing, 35(5), 634-646. https://doi.org/10.1108/JSM-05-2020-0162
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Akila S, Mohanbabu B, Babu Balraj, Chandrasekar Sivakumar (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.